Core/shell-type nanorods of Tb3+-doped LaPO4, modified with amine groups, revealing reduced cytotoxicity

نویسندگان

  • Marcin Runowski
  • Krystyna Dąbrowska
  • Tomasz Grzyb
  • Paulina Miernikiewicz
  • Stefan Lis
چکیده

ABSTRACT A simple co-precipitation reaction between Ln3+ cations (Ln = lanthanide) and phosphate ions in the presence of polyethylene glycol (PEG), including post-treatment under hydrothermal conditions, leads to the formation of Tb3+-doped LaPO4 crystalline nanorods. The nanoparticles obtained can be successfully coated with amorphous and porous silica, forming core/shell-type nanorods. Both products reveal intensive green luminescence under UV lamp irradiation. The surface of the core/shell-type product can also be modified with -NH2 groups via silylation procedure, using 3-aminopropyltriethoxysilane as a modifier. Powder X-ray diffraction, transmission electron microscopy, and scanning electron microscopy confirm the desired structure and needle-like shape of the products synthesized. Fourier transform infrared spectroscopy and specific surface area measurements by Brunauer-Emmett-Teller method reveal a successful surface modification with amine groups of the core/shell-type nanoparticles prepared. The nanomaterials synthesized exhibit green luminescence characteristic of Tb3+ ions, as solid powders and aqueous colloids, examined by spectrofluorometry. The in vitro cytotoxicity studies reveal different degree toxicity of the products. LaPO4:Tb3+@SiO2@NH2 exhibits the smallest toxicity against B16F0 mouse melanoma cancer cells and human skin microvascular endothelial cell lines, in contrast to the most toxic LaPO4:Tb3+@SiO2. GRAPHICAL ABSTRACT

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy transfer study between Ce3+ and Tb3+ ions in doped and core-shell sodium yttrium fluoride nanocrystals.

Here, we report the preparation of Ce(3+) and Tb(3+) co-doped sodium yttrium fluoride nanorods and NaYF(4):Ce(3+)/Tb(3+) core-shell nanoparticles by the emulsion method. The core-shell nanoparticles are confirmed by X-ray diffraction study and transmission electron microscopy (TEM) analysis. The hexagonal crystal phase of Ce(3+)-doped sodium yttrium fluoride nanocrystals is converted to the cub...

متن کامل

Probing the Influence of Disorder on Lanthanide Luminescence Using Eu-Doped LaPO4 Nanoparticles

Lanthanide-doped nanocrystals (NCs) differ from their bulk counterparts due to their large surface to volume ratio. It is generally assumed that the optical properties are not affected by size effects as electronic transitions occur within the well-shielded 4f shell of the lanthanide dopant ions. However, defects and disorder in the surface layer can affect the luminescence properties. Trivalen...

متن کامل

Improvement in the luminescence properties and processability of LaF3/Ln and LaPO4/Ln nanoparticles by surface modification.

The surface of lanthanide(III)-doped LaPO4 nanoparticles was modified by reaction with an alcohol, leading to a covalent bond between the ligand and the particle surface. The surface of lanthanide(III)-doped LaF3 nanoparticles was modified to alter the solubility of the nanoparticles and study the influence of surface effects on the luminescence of lanthanide ions doped in the nanoparticles. Th...

متن کامل

Synthesis and spectral characterization of EuPO4 and LaPO4:Eu nanorods.

Monoclinic monazite-type EuPO4 and LaPO4:Eu nanorods were synthesized by a microemulsion-assisted solvothermal method. Their morphologies, structures, and fluorescent properties were characterized by SEM, XRD, and photoluminescence (PL) modern analytic means, respectively. The aspect ratios of EuPO4 and LaPO4:Eu nanorods have a decreasing tendency with increasing carbon chain length of assisted...

متن کامل

Switching Performance of Nanotube Core-Shell Heterojunction Electrically Doped Junctionless Tunnel Field Effect Transistor

Abstract: In this paper, a novel tunnel field effect transistor (TFET) is introduced, thatdue to its superior gate controllability, can be considered as a promising candidate forthe conventional TFET. The proposed electrically doped heterojunction TFET(EDHJTFET) has a 3D core-shell nanotube structure with external and internal gatessurrounding the channel that employs el...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2013